HDU 4726 Kia's Calculation (贪心算法)

2014-11-23 22:19:38 · 作者: · 浏览: 4
Kia's Calculation
Time Limit: 2000/1000 MS ( Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 513 Accepted Submission(s): 142
Problem Description
Doctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so careless and alway forget to carry a number when the sum of two digits exceeds 9. For example, when she calculates 4567+5789, she will get 9246, and for 1234+9876, she will get 0. Ghee is angry about this, and makes a hard problem for her to solve:
Now Kia has two integers A and B, she can shuffle the digits in each number as she like, but leading zeros are not allowed. That is to say, for A = 11024, she can rearrange the number as 10124, or 41102, or many other, but 02411 is not allowed.
After she shuffles A and B, she will add them together, in her own way. And what will be the maximum possible sum of A "+" B
Input
The rst line has a number T (T <= 25) , indicating the number of test cases.
For each test case there are two lines. First line has the number A, and the second line has the number B.
Both A and B will have same number of digits, which is no larger than 106, and without leading zeros.
Output
For test case X, output "Case #X: " first, then output the maximum possible sum without leading zeros.
Sample Input
1
5958
3036
Sample Output
Case #1: 8984
Source
2013 ACM/ICPC Asia Regional Online —— Warmup2
题意: 有2个合法的整数。 长度为 10^6。 数字的每一位都能移动, 但移动后的整数一定要是合法的, 即无前导零。 使得 A + B 最大
思路:贪心算法
import java.io.*;  
import java.util.*;  
  
public class Main {  
    BufferedReader bu;  
    PrintWriter pw;  
    int n;  
    int[] a = new int[12];  
    int[] b = new int[12];  
  
    public static void main(String[] args) throws IOException {  
        new Main().work();  
    }  
  
    void work() throws IOException {  
        bu = new BufferedReader(new InputStreamReader(System.in));  
        pw = new PrintWriter(new OutputStreamWriter(System.out), true);  
        n = Integer.parseInt(bu.readLine());  
        for (int p = 1; p <= n; p++) {  
  
            String s1 = bu.readLine();  
            String s2 = bu.readLine();  
  
            Arrays.fill(a, 0);  
            Arrays.fill(b, 0);  
              
            for (int i = 0; i < s1.length(); i++) {  
                a[s1.charAt(i) - '0']++;  
            }  
  
            for (int i = 0; i < s2.length(); i++) {  
                b[s2.charAt(i) - '0']++;  
            }  
            //获取第一个最大的数字  
            int t = getFirst();  
            pw.print("Case #"+p+": ");  
            pw.print(t);  
            if (t == 0) {//如果第一个数字为0,则后面的数字,都为0  
                pw.println();  
                continue;  
            }  
            // 获取后面的数字  
            for (int i = 9; i >
= 0; i--) { int ans = 0; for (int j = 0; j <= 9; j++) { if ((i - j >= 0) && a[j] != 0 && b[i - j] != 0) { int m = Math.min(a[j], b[i - j]); ans += m; a[j] -= m; b[i - j] -= m; } if ((10 + i - j <= 9) && a[j] != 0 && b[10 + i - j] != 0) { int m = Math.min(a[j], b[10 + i - j]); ans += m; a[j] -= m; b[10 + i - j] -= m; } } for (int j = 1; j <= ans; j++) { pw.print(i); } } pw.println(); } } //获取第一个数字 int getFirst() { int i, j; for (i = 9; i >= 1; i--) { for (j = 1; j <= 9; j++) { if ((i - j > 0) && a[j] != 0 && b[i - j] != 0) { a[j]--; b[i - j]--; break; } if ((10 + i - j <= 9) && a[j] != 0 && b[10 + i - j] != 0) { a[j]--; b[10 + i - j]--; break; } } if (j <= 9) break; } return i; } }