poj3181Dollar Dayz(完全背包+记录组合种数+高精度)

2014-11-24 03:30:49 · 作者: · 浏览: 1

Description

Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are:

        1 @ US$3 + 1 @ US$2

        1 @ US$3 + 2 @ US$1

        1 @ US$2 + 3 @ US$1

        2 @ US$2 + 1 @ US$1

        5 @ US$1
Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

Input

A single line with two space-separated integers: N and K.

Output

A single line with a single integer that is the number of unique ways FJ can spend his money.

Sample Input

5 3

Sample Output

5
题目意思:就是给出二个数N,和k,有1~k种钱币,每种都是无限个,用这些种类的钱币可以组合成总钱N有多少种方式。
解题:这就是一个完全背包,把N看成容量,钱币的类型值为花费和价值。与记录有多少种路径的走法一样,但要注意的是这里输出的数据会很大,会超出long long型,所以用两个long long 型来表示一个大数。分别是高位和低位,低位不超过10^18,也就是有17位数。
#include
   
    
int N,dp1[1005];
__int64 dp[2][1005],c,mm;
void complexepack(int use)
{
    for(int n=use;n<=N;n++)
    if(dp1[n]
    
     0) { for(int i=0;i<=N;i++) { dp[0][i]=dp[1][i]=0; dp1[i]=0; } dp[0][0]=1; for(int v=1;v<=k;v++) complexepack(v); if(dp[1][N]) printf("%I64d%017I64d\n",dp[1][N],dp[0][N]); else printf("%I64d\n",dp[0][N]); } }