UVA 11387 (14.2.28)

2014-11-24 10:10:29 · 作者: · 浏览: 1

II U C ONLINE C ON TEST 2 008

Problem C: The 3-Regular Graph

Input: standard input

Output: standard output

The degree of a vertex in a graph is the number of edges adjacent to the vertex. A graph is 3-regular if all of its vertices have degree 3. Given an integer n, you are to build a simple undirected 3-regular graph with n vertices. If there are multiple solutions, any one will do.

Input

For each test case, the input will be a single integer n as described above. End of input will be denoted by a case where n = 0. This case should not be processed.

Output

If it is possible to build a simple undirected 3-regular graph with n vertices, print a line with an integer e which is the number of edges in your graph. Each of the following e lines describes an edge of the graph. An edge description contains two integers a & b, the two endpoints of the edge. Note that the vertices are indexed from 1 to n. If it is not possible to build a simple undirected 3-regular graph with n vertices, print Impossible in a single line.

Constraints

- 1 ≤ n ≤ 100

Sample Input

Output for Sample Input

4

3

0

6

1 2

1 3

1 4

2 3

2 4

3 4

Impossible

Problem setter: Manzurur Rahman Khan

Original idea: Mohammad Mahmudur Rahman

时隔好几个月再写题解了。。。

题意:就是给出N个点,然后在这N个点间连线,使得每个点的度数为三,并输出每条线连接哪两个点。

思路:由图论知识可得,一条线意味着总度数加2,于是可得无论多少条线,总度数肯定为偶数,若给出奇数个点,3乘以一个奇数,恒为奇数,所以排除奇数个点的情况

然后偶数个点,首先收尾相连,然后每个点都是和对面的那个点相连即可。


AC代码:

#include
  
   

int map[105][105];

int main() {
    int n;
    while(scanf("%d", &n) != EOF) {
        if(n == 0)
            break;
        if(n % 2 == 1 || n == 2) {
            printf("Impossible\n");
        }
        else if(n == 0)
            break;
        else {
            int v = n + n / 2;
            printf("%d\n", v);
            for(int i = 1; i < n; i++)
                printf("%d %d\n", i, i+1);
            printf("%d 1\n", n);
            for(int i = 1; i <= n/2; i++)
                printf("%d %d\n", i, i+n/2);
        }
    }
    return 0;
}