http://acm.hdu.edu.cn/showproblem.php?pid=4311
There is an infinite integer grid at which N retired TJU-ACMers have their houses on. They decide to unite at a common meeting place, which is someone's house. From any given cell, only 4 adjacent cells are reachable in 1 unit of time.
Eg: (x,y) can be reached from (x-1,y), (x+1,y), (x, y-1), (x, y+1).
Finding a common meeting place which minimizes the sum of the travel time of all the retired TJU-ACMers.
Input The first line is an integer T represents there are T test cases. (0
Output For each test case, output the minimal sum of travel times.
Sample Input
4 6 -4 -1 -1 -2 2 -4 0 2 0 3 5 -2 6 0 0 2 0 -5 -2 2 -2 -1 2 4 0 5 -5 1 -1 3 3 1 3 -1 1 -1 10 -1 -1 -3 2 -4 4 5 2 5 -4 3 -1 4 3 -1 -2 3 4 -2 2
Sample Output
26 20 20 56 Hint In the first case, the meeting point is (-1,-2); the second is (0,0), the third is (3,1) and the last is (-2,2)
/**
hdu 4311 曼哈顿距离
题目大意:在给定的n个点中选择一个点,使得其他点到这个点的曼哈顿距离之和最小,求出这个最小的距离
解题思路:如果我们确定了这个点的坐标为 (x,y).xx为所有点的横坐标之和,numlx表示该点左边的点的个数,
那么lengx=(x*numlx-sumx[1~numlx-1])+(sumx[numlx~n]-x*(n-numlx))=x*(2*numlx-n)+xx-2*sum[1~numlx];
对于纵坐标的处理类似。
这些工作做好之后我们把n个点都枚举1遍取最小就可以了。
*/
#include
#include
#include
#include
using namespace std; typedef long long LL; const int maxn=100005; struct note { int x,y,id; } a[maxn]; int x[maxn],y[maxn],n; LL numx[maxn],numy[maxn]; bool cmp1(note a,note b) { return a.x