Given a sequence of integers a1,?...,?an andq queries x1,?...,?xq on it. For each queryxi you have to count the number of pairs(l,?r) such that 1?≤?l?≤?r?≤?n and gcd(al,?al?+?1,?...,?ar)?=?xi.
is a greatest common divisor ofv1,?v2,?...,?vn, that is equal to a largest positive integer that divides allvi.
The first line of the input contains integer n, (1?≤?n?≤?105), denoting the length of the sequence. The next line containsn space separated integers a1,?...,?an, (1?≤?ai?≤?109).
The third line of the input contains integer q, (1?≤?q?≤?3?×?105), denoting the number of queries. Then followsq lines, each contain an integer xi, (1?≤?xi?≤?109).
OutputFor each query print the result in a separate line.
Sample test(s) Input3 2 6 3 5 1 2 3 4 6Output
1 2 2 0 1Input
7 10 20 3 15 1000 60 16 10 1 2 3 4 5 6 10 20 60 1000Output
14 0 2 2 2 0 2 2 1 1
题意给你一个序列和q个询问,输出有多少个区间[l,r]满足区间gcd为询问的值。
思路:处理出每个区间的gcd(要注意合并区间),如果有询问则直接加上去。
#includeusing namespace std; std::map id; vector >gcdList; const int MAXN=100000+5; int query[MAXN*3],A[MAXN]; long long ans[MAXN*3]; int _gcd(int a,int b){return b?_gcd(b,a%b):a;} int ID(int x){ if(!id[x])id[x]=id.size(); return id[x]; } int main(int argc, char const *argv[]) { int n; ios_base::sync_with_stdio(false); gcdList.clear();id.clear(); cin>>n; for(int i=1;i<=n;i++)cin>>A[i]; int q;cin>>q; for(int i=1;i<=q;i++){ cin>>query[i]; query[i]=ID(query[i]); } for(int i=1;i<=n;i++){ for(int j=0;j