Triangle

2014-11-24 08:44:43 · 作者: · 浏览: 0
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
hint : 简单的动态规划,若考虑 状态 dp[i][j] := 从开始位置到第i行j列的最小路径和,那么可以给出转移方程为:dp[i][j] = triangle[i][j] + min{dp[i-1][j],dp[i-1][j-1]}, for( 0

public class Solution {  
    public int minimumTotal(ArrayList> triangle) {  
        // IMPORTANT: Please reset any member data you declared, as  
        // the same Solution instance will be reused for each test case.  
        if(triangle.size() == 0)  
            return 0;  
        if(triangle.size() == 1)  
            return triangle.get(0).get(0);  
        int n = triangle.size();  
        int[] dplast = new int[1];  
        dplast[0] = triangle.get(0).get(0);  
        for(int i = 1; i < n; i++)  
        {  
            ArrayList
tmp = triangle.get(i); int[] dpcurrent = new int[tmp.size()]; for(int j = 0; j < tmp.size(); j++) { if(j == 0) { dpcurrent[j] = dplast[j] + tmp.get(j); continue; } if(j == tmp.size() - 1) { dpcurrent[j] = dplast[j-1] + tmp.get(j); continue; } dpcurrent[j] = Math.min(dplast[j-1], dplast[j]) + tmp.get(j); } dplast = dpcurrent; } int res = Integer.MAX_VALUE; for(int i = 0; i < n; i++) { res = Math.min(res, dplast[i]); } dplast = null; return res; } }