flexibly.
Historic Unix uses Swapping – entire process is transferred to the main memory from the swap device, whereas the Unix System V uses Demand Paging – only the part of the process is moved to the main memory. Historic Unix uses one Swap Device and Unix System V allow multiple Swap Devices.
A Map is an Array, which contains the addresses of the free space in the swap device that are allocatable resources, and the number of the resource units available there.
This allows First-Fit allocation of contiguous blocks of a resource. Initially the Map contains one entry – address (block offset from the starting of the swap area) and the total number of resources.
Kernel treats each unit of Map as a group of disk blocks. On the allocation and freeing of the resources Kernel updates the Map for accurate information.
Kernel follows Round Robin scheme choosing a swap device among the multiple swap devices in Unix System V.
A Region is a continuous area of a process’s address space (such as text, data and stack). The kernel in a ‘Region Table’ that is local to the process maintains region. Regions are sharable among the process.
When Kernel swaps the process out of the primary memory, it performs the following:
Process before swapping is residing in the primary memory in its original form. The regions (text, data and stack) may not be occupied fully by the process, there may be few empty slots in any of the regions and while swapping Kernel do not bother about the empty slots while swapping the process out.
After swapping the process resides in the swap (secondary memory) device. The regions swapped out will be present but only the occupied region slots but not the empty slots that were present before assigning.
While swapping the process once again into the main memory, the Kernel referring to the Process Memory Map, it assigns the main memory accordingly taking care of the empty slots in the regions.
This contains the private data that is manipulated only by the Kernel. This is local to the Process, i.e. each process is allocated a u-area.
All memory space occupied by the process, process’s u-area, and Kernel stack are swapped out, theoretically.
Practically, if the process’s u-area contains the Address Translation Tables for the process then Kernel implementations do not swap the u-area.
fork() is a system call to create a child process. When the parent process calls fork() system call, the child process is created and if there is short of memory then the child process is sent to the read-to-run state in the swap device, and return to the user state without swapping the parent process. When the memory will be available the child process will be swapped into the main memory.
At the time when any process requires more memory than it is currently allocated, the Kernel performs Expansion swap. To do this Kernel reserves enough space in the swap device. Then the address translation mapping is adjusted for the new virtual address space but the physical memory is not allocated. At last Kernel swaps the process into the assigned space in the swap device. Later when the Kernel swaps the process into the main memory this assigns memory according to the new address translation mapping.
The swapper is the only process that swaps the processes. The Swapper operates only in the Kernel mode and it does not uses System calls instead it uses internal Kernel functions for swapping. It is the archetype of all kernel process.
The swapper works on the highest scheduling priority. Firstly it will look for any sleeping process, if not found then it will