TOP

Python数据可视化的10种技能(一)
2019-01-27 16:08:52 】 浏览:402次 本网站的内容取自网络,仅供学习参考之用,绝无侵犯任何人知识产权之意。如有侵犯请您及时与本人取得联系,万分感谢。
Tags:Python 数据 可视化 技能

今天我来给你讲讲Python的可视化技术。

如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解。其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读。同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来。

可视化视图都有哪些?

按照数据之间的关系,我们可以把可视化视图划分为4类,它们分别是比较、联系、构成和分布。我来简单介绍下这四种关系的特点:

比较:比较数据间各类别的关系,或者是它们随着时间的变化趋势,比如折线图;

联系:查看两个或两个以上变量之间的关系,比如散点图;

构成:每个部分占整体的百分比,或者是随着时间的百分比变化,比如饼图;

分布:关注单个变量,或者多个变量的分布情况,比如直方图。

同样,按照变量的个数,我们可以把可视化视图划分为单变量分析和多变量分析。

  • 单变量分析指的是一次只关注一个变量。比如我们只关注“身高”这个变量,来看身高的取值分布,而暂时忽略其他变量。

  • 多变量分析可以让你在一张图上可以查看两个以上变量的关系。比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出来这两个变量之间是否存在某种联系。

可视化的视图可以说是分门别类,多种多样,今天我主要介绍常用的10种视图,包括了散点图、折线图、直方图、条形图、箱线图、饼图、热力图、蜘蛛图、二元变量分布、成对关系。

散点图

散点图的英文叫做scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。当然,除了二维的散点图,我们还有三维的散点图。

我在上一讲中给你简单介绍了下Matplotlib这个工具,在Matplotlib中,我们经常会用到pyplot这个工具包,它包括了很多绘图函数,类似Matlab的绘图框架。在使用前你需要进行引用:

import matplotlib.pyplot as plt

在工具包引用后,画散点图,需要使用plt.scatter(x, y, marker=None)函数。x、y 是坐标,marker代表了标记的符号。比如“x”、“>”或者“o”。选择不同的marker,呈现出来的符号样式也会不同,你可以自己试一下。

下面三张图分别对应“x”“>”和“o”。

除了Matplotlib外,你也可以使用Seaborn进行散点图的绘制。在使用Seaborn前,也需要进行包引用:

import seaborn as sns

在引用seaborn工具包之后,就可以使用seaborn工具包的函数了。如果想要做散点图,可以直接使用sns.jointplot(x, y, data=None, kind='scatter')函数。其中x、y是data中的下标。data就是我们要传入的数据,一般是DataFrame类型。kind这类我们取scatter,代表散点的意思。当然kind还可以取其他值,这个我在后面的视图中会讲到,不同的kind代表不同的视图绘制方式。

好了,让我们来模拟下,假设我们的数据是随机的1000个点。

# 数据准备

N = 1000

x = np.random.randn(N)

y = np.random.randn(N)

# 用Matplotlib画散点图

plt.scatter(x, y,marker='x')

plt.show()

# 用Seaborn画散点图

df = pd.DataFrame({'x': x, 'y': y})

sns.jointplot(x="x", y="y", data=df, kind='scatter');

plt.show()

我们运行一下这个代码,就可以看到下面的视图(第一张图为Matplotlib绘制的,第二张图为Seaborn绘制的)。其实你能看到Matplotlib和Seaborn的视图呈现还是有差别的。Matplotlib默认情况下呈现出来的是个长方形。而Seaborn呈现的是个正方形,而且不仅显示出了散点图,还给了这两个变量的分布情况。

Matplotlib绘制:

Seaborn绘制:

折线图

折线图可以用来表示数据随着时间变化的趋势。

在Matplotlib中,我们可以直接使用plt.plot()函数,当然需要提前把数据按照X轴的大小进行排序,要不画出来的折线图就无法按照X轴递增的顺序展示。

在Seaborn中,我们使用sns.lineplot (x, y, data=None)函数。其中x、y是data中的下标。data就是我们要传入的数据,一般是DataFrame类型。

这里我们设置了x、y的数组。x数组代表时间(年),y数组我们随便设置几个取值。下面是详细的代码。

# 数据准备

x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]

y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]

# 使用Matplotlib画折线图

plt.plot(x, y)

plt.show()

# 使用Seaborn画折线图

df = pd.DataFrame({'x': x, 'y': y})

sns.lineplot(x="x", y="y", data=df)

plt.show()

然后我们分别用Matplotlib和Seaborn进行画图,可以得到下面的图示。你可以看出这两个图示的结果是完全一样的,只是在seaborn中标记了x和y轴的含义。

直方图

直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,这个小区间也叫作“箱子”,然后在每个“箱子”内用矩形条(bars)展示该箱子的箱子数(也就是y值),这样就完成了对数据集的直方图分布的可视化。

在Matplotlib中,我们使用plt.hist(x, bins=10)函数,其中参数x是一维数组,bins代表直方图中的箱子数量,默认是10。

在Seaborn中,我们使用sns.distplot(x, bins=10, kde=True)函数。其中参数x是一维数组,bins代表直方图中的箱子数量,kde代表显示核密度估计,默认是True,我们也可以把kde设置为False,不进行显示。核密度估计是通过核函数帮我们来估计概率密度的方法。

这是一段绘制直方图的代码。

# 数据准备

a = np.random.randn(100)

s = pd.Series(a)

# 用Matplotlib画直方图

plt.hist(s)

plt.show()

# 用Seaborn画直方图

sns.distplot(s, kde=False)

plt.show()

sns.distplot(s, kde=True)

plt.show()

我们创建一个随机的一维数组,然后分别用Matplotlib和Seaborn进行直方图的显示,结果如下,你可以看出,没有任何差别,其中最后一张图就是kde默认为Ture时的显示情况。

热力图

热力图,英文叫heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直

请关注公众号获取更多资料


Python数据可视化的10种技能(一) https://www.cppentry.com/bencandy.php?fid=77&id=205836

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇matplotlib 设置图形大小时 figsi.. 下一篇python 深浅拷贝&集合

评论

验 证 码:
表  情:
内  容: